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Abstract-This paper is concerned with the optimal shape design of solids undergoing small-strain,
small-rotation, elasto-viscoplastic deformation. Shape sensitivities for this class of problems are
determined by using a direct differentiation approach (DDA) to the governing boundary element
method (BEM) equations of the problem. The standard BEM and the sensitivity equations are
discretized and solved numerically, Shape optimization is carried out by coupling the standard and
sensitivity analyses with an optimizer. The optimization algorithm chosen here uses sequential
quadratic programming to obtain the desired optimal shape of a body in an iterative manner.
Numerical solutions for optimal shapes of cutouts in plates (two-dimensional plane stress) are
presented. The difference between optimal shapes of solids undergoing purely elastic and elasto
viscoplastic deformation is shown clearly in these examples.

1. INTRODUCTION

The optimal shape design of solid bodies undergoing small-strain elasto-viscoplastic defor
mation is investigated in this paper. The goal here is to maximize or minimize an objective
function without violating certain constraints. The objective functions and constraints are
typically functions of stresses and/or displacements, which, in turn, depend upon the initial
shape of a body. The stresses and displacements in elasto-viscoplastic problems are time
dependent and also depend on the history of the deformation process. In this work, the
design variables are taken to be shape parameters that define the initial shape of part or all
of a body, and the objective function and constraint values are defined at a fixed time T
from the start of the deformation process.

An optimization process starts with a preliminary design (first guess of the initial shape
of the body). An elasto-viscoplastic analysis is carried out up to a fixed time T. Next, a
sensitivity analysis is carried out up to the same time T, and the values of the design
sensitivity coefficient (DSCs) are obtained at this time. This information (at time T) is input
to an optimizer. Typically, an optimizer uses nonlinear programming to propose a new
design (improved initial shape of the body) by providing a better value of the objective
function without violating the constraints of a problem. If the new design is acceptable, the
process stops. Otherwise, the interative process is continued, producing a succession of
designs, until an optimal design (optimal initial shape of the body) is obtained.

In addition to successive simulations of an elasto-viscoplastic deformation process,
the work described here has two additional important ingredients. The first is the accurate
calculation of DSCs, which is discussed below. The second is the optimizer. In this work,
a computer subroutine, based on the work of Schittkowski m}g6), has been used for this
purpose. This work uses a sequential quadratic programming algorithm to carry out the
optimization process. The reader is referred to books by Banichuk (1983), Haftka et al.
(1990) and Zhao (1991) for full descriptions of the optimization of elastic structures.

Accurate calculation ofDSCs is vital for the success ofan optimization process. Design
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sensitivity coefficients are the rates of change of response quantities, such as stress or
displacement in a loaded body, with respect to design variables. There is a rich literature
on the subject of calculation of DSCs for linear problems, such as linear elasticity. The
book by Haug et al. (1986) gives an excellent summary of research in this area up to that
time. Basically, three different approaches have been used-the finite difference approach
(FDA), the adjoint structure approach (ASA), and the direct differentiation approach
(DDA). Also, both the finite element method (FEM) and the boundary element method
(BEM) have been used for these analyses by different researchers.

Design sensitivity coefficients for nonlinear solid mechanics problems are of primary
concern to this work. Arora and his co-workers (Wu and Arora, 1987; Cardoso and Arora,
1988; Tsay and Arora, 1990; Tsay et al., 1990), Choi and his co-workers (Choi and Santos,
1987; Santos and Choi, 1988; Park and Choi, 1990) and Tortorelli (1988, 1990) have
attempted nonlinear sensitivity problems with the FEM. Mukherjee and Chandra (1989)
presented a BEM formulation for shape sensitivities for small-strain elasto-viscoplastic
problems, and Zhang et al. (1992a) recently carried out a numerical implementation for
this class of problems. A BEM formulation for fully nonlinear problems with both material
and geometric nonlinearities has been published by Mukherjee and Chandra (1991), and
Zhang et al. (1992b) have recently published a numerical implementation for these
problems.

This paper first reviews the calculation of DSCs, for small-strain, two-dimensional,
elasto-viscoplastic problems. The equations for the DSCs are obtained by the DDA of the
governing BEM equations of the problem. Some modifications have been made to the
equations presented by Zhang et al. (1992a), and these are discussed here. As has been
pointed out in previous papers, since nonelastic strain rates are typically strongly nonlinear
and sensitive functions of stresses and DSCs are derivatives of history-dependent response
variables, the numerical process must be extremely accurate in order for the optimization
process to succeed. The BEM, however, is known to be very accurate if its numerical
implementation is carried out with care. These issues are discussed further later in this
paper.

The rest of this paper is concerned with shape optimization problems. Optimal shapes
for cutouts in plates are used as numerical examples. Careful attention is paid to the best
way of characterizing the geometry of a cutout and the choice of optimization functions
and constraints. Elastic optimization problems are solved in order to check numerical
results against known solutions. Finally, numerical results are presented for the design of
the shape of a cutout in a plate undergoing elasto-viscoplastic deformation.

2. EQUATIONS FOR TWO-DIMENSIONAL ELASTD-VISCOPLASTICITY

2.1. The DBEMformulation for plane strain
Following Zhang et al. (1992a), the rate form of the DBEM (derivative BEM) for

mulation for two-dimensional elasto-viscoplasticity (or elasto-plasticity) in a simply con
nected domain is (i,j, k = 1, 2) :

0= r [Ujj(b, P, Q)ij(b, Q) - Wjj(b, P, Q)Aj(b, Q)] dS(Q) +2Gel;) (b, P)
JaB

x r Ujj(b,P,Q)nk(b,Q) dS(Q) + r2GUij,k(b, P,q)[el;)(b, q)-e}Z)(b,P)] dA(q), (1)1B 1

A two-dimensional body, B, has the boundary aR in the X\-X2 plane, and uj , ~j = audas,
1:j and e}jl are the components of the displacement, its tangential derivative (s is the
curvilinear length coordinate measured around aB in the anticlockwise sense), traction and
nonelastic strain, respectively. A superposed dot denotes a time derivative (pseudo-time
derivative for elasto-plasticity), and b is a vector ofdesign variables. The trace, e(n), in three
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dimensions, Brl + B~~ + B~L is assumed to vanish, but can be restored if desired (Mukherjee
and Chandra, 1987). Also, P (or p) and Q (or q) are source and field points, with capital
letters denoting points on oB and lower case letters denoting points inside B, and nit are
components of the unit outward normal to oB at a point Q on it. This normal is allowed
to jump across a corner. A comma denotes a derivative with respect to the coordinates of
a field point. Finally, the kernels Uij and Wij are as given by Zhang et al. (1992a).

Equation (1) is a modified version of eqn (1) in Zhang et al. (1992a). Their version
had the domain integral

L2GUij,lt(b, P, q)6~)(b, q) dA(q),

which is O(l/r) singular for two-dimensional problems. Using the addition-subtraction
method, one can write the above integral as

The first term above is the last term in eqn (1) while the second, by applying Gauss' theorem,
becomes the second term in eqn (1). The above regularization makes the domain integral
in eqn (1) completely regular. This improves the accuracy of the numerical solutions of the
mechanics problem. The sensitivity version ofeqn (1) above [eqn (8) of this paper] also has
regular domain integrals, while the corresponding equation in Zhang et al. (1992a) [their
eqn (13)] has O(l/r) singular domain integrals. Numerical results for sensitivities from eqn
(13) of Zhang et al. (1992a) are not accurate enough for the optimization algorithm to
succeed in some cases, while those from the regularized version [eqn (8) of this paper] are
more accurate and lead to convergent optimal solutions for the (inelastic) numerical exam
ples discussed later in this paper. Thus, regularization of the sensitivity equations [eqn (13)
in Zhang et al. (1992a)] has proved to be crucial in the present work. Numerical results
from the present and the old [Zhang et al. (1992a)] formulations, for a particular example,
are discussed later in Section 4.6.1 of this paper.

It has been found useful to add the equation (i = 1, 2)

0= [ ~idS,
JOB

(2)

which reflects continuity ofthe velocity at a point on oB. The addition of this equation has
substantially reduced the condition number of the stiffness matrix obtained by discretizing
eqn (I)-from around 80,000 to around 900 in one example. Also, inclusion of eqn (2)
improves the symmetry ofthe numerical solution in problems that are physically symmetric.
It should also be noted that, for some problems with prescribed velocity on a portion oB I

of oB, prescription of the tangential derivative of the velocity on oB I might lead to loss of
information on the velocity itself. This may lead to loss of uniqueness of the solution
obtained from this formulation. In such cases, this difficulty can be overcome by appending
constraint equations of the type

(3)

where A and B are suitably chosen points on the boundary oB.
As can be seen from eqn (1), the rates of traction and displacement derivative vectors
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are the primary unknowns on aBo It can be shown that the rates of stress components at a
regular point P on aB can be written in terms of the rates of the components of T, A and
If' as [see Sladek and Sladek (1986) and Cruse and Vanburen (1971) for the elastic case] (i,
j, k, i = 1,2)

. A' B 1 C '(n) D '(n)(Jij = /jk tk + ijkDok + ijk/Sk/ + ijSkk, (4)

where Aijb etc., are functions of the components of the unit outward normal (0) and unit
(anticlockwise) tangent (t) vectors to aB at P, and the shear modulus and Poisson's ratio
G and v, respectively, of the body. Explicit expressions for Aijk , etc., are given by Zhang et
ai. (l992a) and are not repeated here.

The nonelastic problem also requires that strain and stress rates be obtained at internal
points as functions of time. The form used here, in which the domain integrand is Q(ljr)
singular, is [i,j, k, r= 1,2; r= ajax/(p)]

Uj,r(b,p) = r [Uij,r(b,p, Q)'t/(b, Q) - Wij,T(b,p, Q)Ai(b, Q)] dS(Q)
JOB

+12GUij.k/(b,P, q)[Bl;)(b, q) -el;) (b,p)] dA(q). (5)

Finally, the stress rate components at an internal point are obtained from Hooke's law
as (i,j, k = 1,2)

(6)

where A. = 2Gvj(l-v) is the first Lame constant. The formulation for plane stress is quite
analogous to that described by Zhang et ai. (1992a) and is not described here in the interest
of brevity.

2.2. Modeling ofcorners
The modeling of comers on aB, using conforming boundary elements for elasticity

problems, has been discussed in detail by Zhang and Mukherjee (1991), and the elasto
viscoplasticity case by Zhang et ai. (1992a). Eight primary scalar quantities, ti, Ai, ti,
and Ai (i = 1,2; - denotes before and + after a comer in a counterclockwise sense), are
of interest at a comer. Four of these are prescribed from boundary conditions and two
DBEM equations are available at a source point at a comer. If the stress components are
continuous at a comer, one can write the following three additional scalar equations for
plane strain (i,j, k, i = 1,2)

A - '-+B-l-+C- '(n)+D- '(n) A+ '++B+ l++C+ '(n)+D+'(n)/jk tk ijkDok ijk/ Ski ij Skk = ijktk ijkDok ijklSk/ ij Skk . (7)

With e}jl known at any time from a viscoplastic constitutive model (a discussion of
such models appears later in this paper), the global system of equations is overdetermined
because of one extra equation at each comer [from eqn (7) above]. The system, however,
is consistent, has full rank, and the number of linearly independent equations equals the
number of unknowns. Regular QR decomposition [see, for example, Golub and Van Loan
(1989)] is used to solve this system of equations. The general situation for discontinuous (J
across a comer for the linear elastic case is discussed in detail by Zhang and Mukherjee
(1991).
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3. SENSITIVITY EQUATIONS FOR PLANE STRAIN

The first step here is the differentiation of eqn (1) with respect to a design variable b
(which is any component ofthe design vector b). Let a superscribed asterisk (*) denote the
design derivative (with respect to b) of a variable of interest and a superscribed circle (0)
denote the design derivative of its rate [i.e. cTij = (djdb)uij and (rjj = (djdb)uij]' Now, one
obtains the equations (i,), k = 1,2)

o= r [Uij(b, P, Q)i'j(b, Q) - Wjj(b, P, Q)Aj(b, Q)] dS(Q)
JaB

+1[Uij(b, P, Q)ij(b, Q) - Wij(b, P, Q)Aj(b, Q)] dS(Q)
aB

+1[Uij(b, P, Q)ij(b, Q) - Wij(b, P, Q)Aj(b, Q)] dS(Q)
aB

+2Ge~) (b, P)1Uij(b, P, Q)nk (b, Q) dS(Q)
aB

+2Ge~) (b, P)1Uij(b, P, Q)nk(b, Q) dS(Q)
aB

+2Ge};) (b, P)1Uij(b, P, Q)nk(b, Q) dS(Q)
aB

+L2GUij,k(b,Pq)[e};)(b,q)-e~)(b,p)] dA(q)

+L2GUij,k(b, P, q)[e~)(b, q) -elk)(b, P)] dA(q)

+L2GUij,k(b,P,q)[elk)(b,q)-elk)(b,P)] dA(q), (8)

where, at the start of a time step, half the sensitivities of the rates of Aj and 7:j are to be
determined and the rest of the quantities are known. The rates of 7:j, Aj and f.}j) are known
from the solution of the usual DBEM problem, up to this time, and the sensitivity of the
nonelastic strain rate is known from differentiating a suitable constitutive model (Zhang et
al., 1992a). Formulae for Ujj,Wjj, Ujj,k [i.e. djdb(Ujj,k)]' d~, <lA, nk and nk are given by Zhang
et al. (I992a).

Derivatives of eqns (2), (3) and (4) take the forms

0=1AjdS+ r AjdS,
aB JaB

uj(B) - uj(A) = rAj dS +rAj doS,

(9)

(10)

(11)

Finally, one must derive an equation for the sensitivities of the velocity gradients at
an internal point. The resulting equation has the form (all indices = 1,2)
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Uj,T(b,p) = r [Uij,T(b,p, Q)i;(b, Q) - Wjj,T(b,p, Q)Aj(b, Q)] dS(Q)
JOB

+ r [Uij,T(b,p, Q)i;(b, Q) - Wjj,T(b,p, Q)Aj(b, Q)] dS(Q)
JOB

+ r [U;j,T(b,p, Q)ij(b, Q) - Wij,T(b,p, Q)A;(b, Q)] dS(Q)
JOB

- 2Gel;;> (b,p) r Uij.k(b,p, Q)n/(b, Q) dS(Q)
JOB

- 2Gel;) (b,p) r Uij.k(b,p, Q)n/(b, Q) dS(Q)
JOB

-2Ge~)(b,p) r Ujj.k(b,p, Q)~/(b, Q) dS(Q)
JOB

-2Ge~)(b,p) r U;j.k(b,P, Q)n/(b, Q) dS(Q)
JOB

+L2GUij,kT(b,p, q)[e~)(b, q) -e~)(b,p)] dA(q)

+L2GUjj,kT(b,p, q)[e~)(b, q) -el;)(b,p)] dA(q)

+L2GUjj,kT(b,p, q)[el;)(b, q) - el;) (b,p)] dA(q), (12)

where Uij,kT = djdb(Uij,kT).
The entire right-hand side of equation (12) is known at this stage, so that the required

sensitivity of the velocity gradient at an internal point, Uj,T = djdb(uj,T), can be obtained by
a series of function evaluations. The boundary kernels are regular, and the domain inte
grands are Ijr singular. These singular integrals are numerically evaluated by the polar
mapping method [Mukherjee (1982), see also, Nagarajan and Mukherjee (1993)].

Stress rate sensitivities at an internal point are obtained from a differential version of
Hooke's law [eqn (6)]

(13)

The sensitivity equations at a corner, across which U jj and aij are continuous, have the
form

(14)

with uij, at either side of a corner, given by eqn (II).
A discussion of the general form of viscoplastic constitutive equations and their sen

sitivities appears in Zhang et al. (l992a).

4. OPTIMIZATION OF PLATES WITH CUTOUTS

4.1. Parameterization ofcutout geometry
The problem here concerns plates of arbitrary shape, in plane stress, with a traction

free cutout inside the plate. The plate material can be linear elastic or elasto-viscoplastic.
With the global x 1 and X2 axes centered at the center ofa cutout, a variety of smooth curves
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(e.g. a circle, an ellipse or a rectangle with rounded corners) can be represented by the
equations (Sadegh, 1988; Lekhnitski, 1968)

XI = a(cos O+e cos 30),

X2 = a(p sin O-e sin 30),

where a controls the size, e the shape, and pthe aspect ratio of the smooth cutout.
For example, with p= 1, a slight variation of the above equations is

a
Xl = -1-(cos O+e cos 30),

+e

X2 = -1a (sin O-e sin 30),
+e

(15)

(16)

(17)

(18)

where the points (a, 0) (with 0 = 0) and (0, a) (with 0 = n12) are points on the curve.
Considering a fixed and e variable, e = -0.15, for example, gives a square with rounded
corners and e = 0, of course, is a circle.

4.2. Objective functions and constraints
The optimization problem is set up as

min ¢(b;),

subject to the constraints

Various choices are possible for the objective function ¢. Two of these are

(19)

(20)

(21)

(22)

where aBo is the outer boundary, aBc is the cutout boundary, (fl/ is the tangential stress on
the cutout boundary, 0'1/ is the mean value of (fl/' and L is the total length of the cutout
boundary.

Equations (19) and (21) express the requirement ofminimizing the external work done
on the body (on a traction-free cutout, 't = 0), and eqns (19) and (22) express the require
ment of minimizing the variance of the tangential stress on the cutout, thereby requiring
the tangential stress on the cutout to be as uniform as possible. It is very important to note
that,Jor time-dependent elasto-viscoplastic problems, an objective function is defined here as
the value of ¢ at a fixed time T from the start of the deformation process. The constraints
used in these problems are related to bounds on the shape design variables.

4.3. Numerical implementation and solution strategy
Numerical implementation of the standard elasto-viscoplastic problem and the sen

sitivity problem follows the usual practice [see Zhang et al. (1992a)]. The boundary oB of
the body is subdivided into piecewise quadratic, conforming boundary elements. The
variables r; and Ii; and their sensitivities are assumed to be piecewise quadratic on the
boundary elements. The domain B of the body is divided into Q4 internal cells. The
nonelastic strain rate components, eij), and their sensitivities, as well as the quantity dA/dA,
are interpolated on the Q4 internal cells.
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Logarithmically singular integrands are integrated with log-weighted Gaussian inte
gration formulae. The O(l/r) singular domain integrals are regularized by polar coordinate
mapping (Mukherjee, 1982) and then evaluated by Gaussian quadrature on a square.
Typical numbers ofGauss points used are 20 and 16 for regular and log-singular boundary
integrals and 3 x 3 for regular and regularized domain integrals.

The solution strategy for the standard and sensitivity problems, which involves solu
tions ofappropriate equations at the start ofeach time step, together with marching forward
in time, is described in some detail by Zhang et al. (1992a). Time integration has been
carried out with fixed time steps. Optimal shape design is carried out by coupling the
standard and sensitivity analyses with an optimizer (Schittkowski, 1986).

4.4. The optimizer used in this work
The subroutine NOONF (available from the IMSL library) has been used to obtain

optimal solutions in the present study. This subroutine is based on the subroutine NLPQL,
a FORTRAN code developed by Schittkowski (1986). A briefdescription of the algorithm
is given below. Further details are available in the above paper.

A typical nonlinear optimization problem is stated as follows:

min 4>(b), beRn

subject to hj(b) = 0,

gk(b) ~ 0,

bl ~ bi ~ bu ,

forj= l, ... ,m,
fork= 1,2, ... ,p,

for each component bi ofb,

where 4>(b) is the objective function, b is the design variable vector with n components, bl

and bu are lower and upper bounds for each component of b, and hj(b) and gk(b) are
equality and inequality constraints, respectively.

The sequential quadratic programming algorithm NLPQL uses a quadratic approxi
mation of the Lagrangian and linearization of the constraints to define a sequence of
subproblems. This requires the evaluation of a positive definite approximation of the
Hessian of 4>.

Let dk be the solution of a subproblem at the kth iterative step. A line search is used
to find a new design, bk + b defined as

bk + 1 = bk+Akdk, 0 < Ak < I

(no sum on k),

such that the augmented Lagrangian function has a lower function value at the new design.
Here, Ak is the line search or step length parameter.

The iterative process stops when the Kuhn-Tucker optimality conditions are satisfied
within an acceptable tolerance. Schittkowski (1986) shows that, under some mild assump
tions, the algorithm converges globally, i.e. starting from an arbitrary initial point, at least
one accumulation point of the iterates will satisfy the Kubn-Tucker optimality conditions.

Coupling of the optimizer with the mechanics and sensitivity calculations is straight
forward. One must input the functions 4>, o4>/ob;, hj' gk> ohj/obi and Ogk/obi at each iteration.
Typically, 4>, hj andgk depend on quantities such as stress or displacement and are, therefore,
implicit as well as explicit functions of b. The gradients of these functions, with respect to
bi , are obtained from the sensitivities, such as <la/db, by the chain rule of differentiation. It
is important to note that, for elasto-viscoplastic problems, the above functions and their
gradients are evaluated at a preset time T from the start of the simulation. This optimizer
performs very well for the problems considered in this work, provided that the sensitivities
are obtained with sufficient accuracy.
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Xz 't2

0
B

L

Fig. I. Optimal shape design of a cutout in a plate.

4.5. Elastic shape optimization
These numerical examples have been solved in order to check the performance of the

computer program against known elastic solutions.
(a)Minimize external work. In this case, the objective function is 4>1 from eqn (21) so

that

*1* 1* 1 .4>1 = 7:jUj dS+ tjUj dS+ 7: jUj dS.
a~ a~ a~

(23)

The plate is square, and the cutout shape is defined by eqns (15) and (16) with P= 1, a
fixed, and 8 the only design variable. Thus, the points [a(l +8),0] and [0, a(l +8)] lie on the
cutout. A quarter ofthe plate is modeled because ofsymmetry (Fig. 1and Table 1). Uniform
biaxial loading, 7:j = 7:2 = 1 MPa, is applied to the plate. The constraints used in this
problem are

-0.15::::; 8 ::::; 0.10. (24)

Table 1. Geometrical and loading parameters for various optimization problems for
cutouts in plates

Problem Parameters

Elastic problem (a)

Elastic problem (b)

Elastie-viscoplastic problem

L=30m
a = 2/(1 +eo) = 2.353 m
p=1
£ == design variable
-r'j' =-rf = I MPa

L=5m
a=lm
£=0
P== design variable
-r'j' =4MPa
-rf = 3 MPa

L=5m
a=lm
£=0
P== design variable
-r'j' = S(t) = 8+4t MPa (t in seconds)
-rf = 0.75 S(t), T= 4 s
A.t = 0.2 s for 0 ~ t ~ 2 s ; 0.05 s for 2 ~ t ~ 4 s

$AS 31:4-6
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The expression for dS/dS on the cutout boundary AB can be easily obtained from
eqns (17) and (18) and Zhang's et al.'s (1992a) eqn (17). The expressions for the normal n
and it on AB are obtained from Zhang et al.'s eqn (19). Using a linear approximation for
the design velocities on the lines EA and BC, one gets:

• a(L-x[)
X2 = 0,

dS a
(25)on BC: Xl = L-a(1 +e)' dS L-a(1 +e)'

onAE: Xl = 0, X2 =
a(L- x 2) dS a

(26)
L-a(1 +e)' dS L-a(1+e) .

Design velocities and dS/dS are zero on the lines CD and DE in Fig. 1.
The shape of the cutout, at different iterations, is shown in Fig. 2. The converged

solution, after seven iterations, is e = - 0.01515. The well-known optimal analytical solution
for a cutout in an infinite elastic plate (Banichuk, 1983) is a circle with e = O.

(b) Minimize variance of tangential stress around cutout boundary. In this case, the
objective function is <P2 from eqn (22) so that

(27)

where

L = rdS and I = rdS.

The plate is square, as before. This time, an elliptical cutout boundary is modeled as

D
f = -0.15

Initial Shape

f = 0.1

No.1 iteration

f =0.0232 f = -0.01515

No.2 iteration Final Shape(7 iterations)

Fig. 2. Shapes of cutout at different iterations for the elastic optimization problem (a).
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XI =acos(}, X2 =bsinO,

with a fixed and b = af3 the design variable. The constraint used in this problem is

0.3 :::;; f3 :::;; 1.0.

543

(28)

(29)

referring to Fig. 1 and Table 1, this time a = 1.0, R = 0, L = 5 m, rf = S = 4 MPa, and
ri = (3j4)S = 3 MPa.

Once again, the expression for d~jdS over the cutout boundary AD can be obtained
easily. A linear approximation is used for the design velocity on the line EA. The design
velocity is zero on the rest of the boundary BCDE. The actual formulae are given later.

The results for successive iterations are given in Table 2. The convergent solution is
f3 =0.756. It is well known (Banichuk, 1983) that the optimal analytical solution for a
cutout in an infinite elastic plate, in this case, is an ellipse with f3 = 0.75.

4.6. Elasto-viscoplastic shape optimization
4.6.1. Constitutive model and numerical issues. The illustrative viscoplastic constitutive

model used in this work is due to Anand (1982). The constitutive equations and material
parameters used here are the same as those described by Zhang et al. (l992a).

As discussed before [e.g. Zhang et al. (1992a, b)], demands on numerical accuracy in
these problems are quite stringent, especially for the calculation of the rates of sensitivities
of stresses. It has proved very useful to check numerical results for benchmark problems
against semi-analytical solutions.

Such a benchmark problem, that of a circular plate with a concentric circular cutout,
subjected to spatially uniform external pressure that increases in time at a constant rate, is
described in detail by Zhang et al. (1992a). A semi-analytical solution for this problem is
also given in that paper. As discussed by Zhang et al., semi-analytical solutions for sen
sitivities have been obtained both by analytical differentiation (ADD) and finite differencing
(FDD) of direct solutions of the corresponding mechanics problem. These solutions agree
within plotting accuracy (see Fig. 9 of Zhang et al., 1992a). Since time integration can be
fairly expensive, it appears best, at first, to suddenly apply a large pressure on the boundary
of a disc and compare the BEM rates against semi-analytical ones. An example of such an
exercise is given below. The problem chosen here is that of an annular circular disc, of
inside and outside radii a = 1.0 m and b = 1.5 m, respectively, with a suddenly applied
external pressure of 12 MPa. The inner radius is the design variable. The mesh and material
model used are exactly the same as those for the corresponding problem by Zhang et al.
(l992a). The results are shown in Table 3. It should be emphasized that, while the problem
is axisymmetric, the BEM program is a general two-dimensional one.

In Table 3, an "analytical" solution is an exact solution for an elastic annular disc
while a "semi-analytical" solution is obtained by numerical time integration of a system of
differential equations governing the elasto-viscoplastic deformation of an axisymmetric
hollow disc. These equations, in cylindrical coordinates, are given as eqns (30)-(33) in
Zhang et al. (1992a). It should be noted here that the "semi-analytical" sensitivity equations

Table 2. Values of Pand 4>2 at different
iterations for the elastic shape optimization

problem (b)t

Number of
iterations P= bla 4>2 (MPa2)

I 1.000 2.70200
2 0.300 15.28900
3 0.814 0.17960
4 0.738 0.01720
5 0.756 0.00098

tCPU time = 29.78 s on an IBM 3090
supercomputer.
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Table 3. Comparison of tangential stress u",u", U" and UtI around cutout in circular disk: BEM and analytical or
semi-analytical solutions [see Zhang et al. (1992a)]

Location .Elastic Elastic-viscoplastic
around
circular UtI (MPa) u" (MPajm) U" (MPa S-I) UtI (MPam- ' S-I)

cutout, (J

(degrees) BEM Anal. BEM Anal. BEM Semi-anal. BEM Semi-anal.

0 -43.21 -43.2 -69.28 -69.12 207.77 205.01 2081.1 2072.7
9 -43.19 -43.2 -69.03 -69.12 204.39 205.01 2097.3 2072.7

18 -43.20 -43.2 -69.26 -69.12 204.97 205.01 2051.1 2072.7
27 -43.20 -43.2 -69.02 -69.12 202.14 205.oI 2070.9 2072.7
36 -43.19 -43.2 -69.25 -69.12 203.15 205.oI 2028.2 2072.7
45 -43.20 -43.2 -69.02 -69.12 201.38 205.01 2063.3 2072.7
54 -43.19 -43.2 -69.25 -69.12 203.16 205.01 2028.6 2072.7
63 -43.20 -43.2 -69.02 -69.12 202.15 205.oI 2072.0 2072.7
72 -43.20 -43.2 -69.26 -69.12 204.99 205.01 2052.4 2072.7
81 -43.19 -43.2 -69.04 -69.12 204.41 205.oI 2099.4 2072.7
90 -43.21 -43.2 -69.28 -69.12 207.80 205.01 2083.3 2072.7

are obtained by analytical differentiation of the mechanics equations. These "semi-analy
tical" solutions can be considered, for practical purposes, to be exact. Of course, they are
used to benchmark the numerical DBEM solutions for special illustrative problems and are
not available for general two-dimensional problems. Finally, "BEM" in Table 3 refers to
numerical solutions from the present, general, two-dimensional DBEM approach.

The sensitivity history for a problem of pressurization of a disc, in plane stress, has
been presented by Zhang et al. (1992a), Fig. 9. In this example, once again, the disc has
inner and outer radii of I m and 1.5 m, respectively, and the inner radius is the design
variable. This time, however, the disc is subjected to an external pressure rate of 5 MPa
s- 1. It is seen that the numerically calculated sensitivity history in Zhang et al. (1992a) is
not very accurate.

Two improvements had to be made in this work in order for the sensitivitives to become
acceptably accurate for shape optimization. The first is the use of the correct formula,

dA 2 b
-dA = - -b---a + -(b----ca)-r' (30)

-Semi-analytical sol.
- - Present version
- . - Zhang et 01. (19920)

where r is the generic radius of the annular disc. The second is the regularization discussed
in Section 2.1 of this paper. Numerical results for the sensitivity history are shown in Fig.
3. In this figure, the "semi-analytical" solution can be considered exact (see above) while
"Zhang et al. (l992a)" refers to the use of the O(llr) singular equations in that paper,
together with the correction given in eqn (30) above. Finally, the "present version" uses
the regularized DBEM equations given in this paper. This version is the most accurate.

g s
.....
Q)

+-'x
W oOL..J....J....J.....a.....L

S
-'-'c..J...'-:1.L.

O
.J....J............-:-'1S~L..J...~20

-t88 (%) (unit: 11m)

Fig. 3. External pressure as a function of 800(A) for a hollow disc. The simulation ends at T = 4 s
when seA) = -4.8% [see also, Zhang et al. (1992a), Fig. 9].
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4.6.2. The optimization problem, constraints, geometry and loading history. The problem
attacked here is the elasto-viscoplastic version of the elastic optimization problem (b)
above. The objective function is now cP2 [eqn (22)], evaluated at some fixed time T in the
deformation history, and the elliptical cutout is defined by eqn (28) with a fixed and b = afJ
the design variable. The constraint equation used here is

0.5 ::::; fJ ::::; 1.0. (31)

Referring to Fig. 1 and Table 1, a fixed remote loading history, for the period 0 ::::; t ::::; T,
is applied to the plate. The question being asked here is: For what values of fJ (i.e. shape of
the cutout) is the tangential stress around the cutout, at time T, as uniform as possible?
Except for the case <1' = <2' (see Fig. 1), for which the optimal cutout shape is a circle (with
fJ = 1), the elasto-viscoplastic solution is expected to differ from the elastic solution. This
is because, for <1' "# <2', the rate of stress relaxation around the elliptical cutout will not be
uniform. Also, the optimal value of fJ is a function of the loading history and the final time
T. These issues are discussed further later in this section.

4.6.3. Geometric sensitivitives and mesh. The choice of mesh, especially the internal
cells, is crucial for the solution of this class of problems. The best approach is to use adaptive
meshing during the iterative optimization process. Work along these lines is currently in
progress.

In this work, however, a fixed mesh is chosen, based on numerical experimentation of
problems with known elastic and elasto-viscoplastic solutions. As mentioned earlier, the
benchmark elasto-viscoplastic problem ofa plate with a circular cutout and uniform remote
loading has proved to be invaluable for this purpose. The mesh chosen, both boundary
elements and internal cells, is shown in Fig. 4(a). In this figure, all boundary nodes are also
nodes for internal cells, except on lines CD and DE where mid-boundary nodes are not
connected to internal cells.

With b as the design variable, the sensitivities of geometrical quantities, used in these
calculations, are as follows [see Fig. 4(b)] :

(a) Boundary
On BC, CD and DE,

(32)

OnEA,

• 0 • L- X 2 (I' .
Xl = , X2 = L-b mear assumptiOn)

OnAB,

dS 1 dA
dS - L-b' dA

1
- L-b' (33)

Xl = acos 0, X2 = b sin 0,

dS b3xi
dS = a4x~ +b4xi'

dA 1 x~
dA = b - b3 '

(34)

(b) Internal points
Inside the rectangle BCDF,
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.
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(b) (0.0>

I

• I

X2P'
1

'-----------------"c
B dStdS=O. ~l=~~

.
dSldS=O

Fig. 4(a). The boundary elements and internal cells used for the elasto-viscoplastic problem.
(b) Sensitivitives of geometrical quantities.

(35)

Inside the region RFEA, using a linear assumption for the velocity X2 [see Fig. 4(b)],

. (L- X
2P) •

X2P = L X2Q'
-X2Q

and

dA JI-x\p/a 2

dA = - L-bJI-xTp/a2 '

where the quantities X2P, etc., are defined in Fig. 4(b). On the line FR,

(36)
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(37)

It is interesting to note that while the value of dA/dA inside the region DFEA matches
the values on its boundary lines EA and FD, such is not the case on the lines AD and EF.
This is expected since a separate kinematic assumption for the design velocities must be
made inside the region DFEA. In the calculations reported next, the values of dA/dA on the
lines AD and EF are those from eqn (36).

4.6.4. Numerical results. Consider, first, Fig. I (see, also, Table 1), with e = 0, b = ap,
rf = Sand r2' = 0.75 S. Elastic stress concentrations for this problem, at points A and D,
can be easily shown to be (Timoshenko and Goodier, 1970)

As is well known (Banichuk, 1983), if b/a = r2' /rf (here 0.75), the load ratio

(Ttl on;lliPse = 1.75

so that the tangential stress (Ttl is uniform around the ellipse. This is the optimal solution
for the elastic problem, as discussed before.

For the elasto-viscoplastic problem, however, the case r2' /rf = b/a does not lead to
uniform relaxation of stress around the ellipse. Perhaps a useful way to see this is to define
"apparent" stress concentrations at points A and D in Fig. 1. Again, for the case 1:f = S
and r2' = 0.75 S, one gets, for the elastic case,

(39)

Thus, for example, for b/a = 0.75, the aforementioned numbers are 1.75 and 2.333, so one
might reasonably expect the tangential stress to relax faster at D than at A in the elasto
viscoplastic case. It seems reasonable to expect, therefore, that the optimal value of b for
the elliptical cutout (with a fixed) should be a number other than 0.75 for the elasto
viscoplastic case. This value ofb must be such that, starting with a nonuniform distribution
of (Ttl around the ellipse, the tangential stress becomes uniform at a fixed (pre-chosen) time
T into the elasto-viscoplastic deformation process. Ofcourse, this optimal value ofb would
depend on the choice of T and the loading history.

With the above-mentioned preamble, the central result of this section is presented in
Table 4. Here, for each value of b, T = 4 s. For the case p = 0.75, for example, the strain
ell (A, T) (see Fig. 1) equals 1.125%. Table 4 shows successive values of p, starting with
the circle p= 1, for the shape optimization problem for the elasto-viscoplastic case. The
iterations are seen to converge, at thefifth iteration, to the value p = 0.69, with a corresponding

Table 4. Values ofPand 4>2(T) at different
iterations for the elasto-viscoplastic shape

optimization problemt

Number of
iterations P= b/a 4>2 (MPa2)

I 1.000 31.56600
2 0.500 14.13300
3 0.724 0.41076
4 0.697 0.03175
5 0.690 0.01052

t CPU time = 1.278 hours on an IBM
3090 supercomputer.
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Table 5. Stress concentrations at A and B (Fig. I) for different values of Pt

Elastic Elasto-viscoplastic

all(A)/S(O) adB)/S(O) ulI(A,1') U22(B, 1')

P Anal. BEM Anal. BEM BEM BEM

1.000 2.250 2.380 1.250 1.224 1.619 0.943
0.500 1.250 1.206 2.750 2.874 1.097 1.627
0.724 1.698 1.714 1.822 1.885 1.324 1.250
0.697 1.644 1.653 1.902 1.972 1.298 1.284
0.690 1.630 1.636 1.924 1.998 1.290 1.294

tUIJ(A, 1') = al )(A, 1')/S(1'); U22(B, 1') = adB, 1')/(S(T). Numerical
results are obtained from the mesh in Fig. 4(a).

Table 6. Correlation of stress relaxation at points A and B (Fig. I) with the "apparent" elastic
strain concentrations at these pointst

"Apparent" stress concentration Drop in stress concentration
Elastic: Analytical Elasto-viscoplastic: BEM

p a))(A)/all(oo) 0'22 (B)/a 22(00) u))(A,1')/u)I(A,O) u22(B,1')/U22(B,O)

1.000 2.250 1.667 0.680 0.770
0.500 1.250 3.667 0.910 0.566
0.724 1.698 2.430 0.772 0.663
0.697 1.644 2.536 0.785 0.651
0.690 1.630 2.571 0.789 0.648
0.750 1.750 2.333 0.761 0.675

t Numerical results are obtained from the mesh in Fig. 4(a).

very low value of <Pl' As discussed before in this paper, the optimization algorithm
used here converges when the Kuhn-Tucker optimality conditions are satisfied within an
acceptable tolerance (Schittkowski, 1986).

It is useful to comment further on some of the details of this problem. Table 5 shows
the stress concentrations at A and at B, for different values of p, for the elastic, as well as
the elasto-viscoplastic, solution at time T. Table 6 shows the correlation of the "apparent"
stress concentration at A and at B to the stress relaxation at these points in the elasto
viscoplastic case. It is seen that the point with the larger "apparent" stress concentration
experiences larger relaxation ofstress. The results for p= 0.75 (the elastic optimal solution)
are included in Table 6. In this case, A and B have the same initial value of stress
concentration, but points B, with the higher "apparent" stress concentration, experiences
a larger relaxation of stress.

Figure 5 shows the tangential stress concentration around the ellipse, at time T, for
various values of b. It is seen that the distribution for b = 0.75 is not uniform, while that
for b = 0.69 is uniform at time T.

-
1.5 -

1.1 ,...

1.7 .......-..-.-....,I,....,-....,...-,-...,.I....,...-r-..,-,--tT"""'l"""--"--tr-"T""""""
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1.6 ~, 2-·-P-0.5
....... ;5······p..0.724 ,,/'

\ 4-··P-0.697 /'
"' 5-p=0.69 //

P 1.4 ".6--' P=0.75 / ;5-en ...., ~'" __ .__.__ .__ .e.._.,/
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BEccentric angle around elliptical cutout (degrees)
Fig. 5. Tangential stress concentration around elliptical cutout, at final time T, for different values

ofp.
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Table 7. Stress sensitivities at A and B (Fig. I) for different values of fJt

Elastic Elasto-viscoplastic

UII (A)IS(O) U22(B)/S(0) uIM,T)IS(T) udB, T)IS(T)

fJ Anal. OEM Anal. OEM OEM OEM

1.000 2.0 2.540 -1.500 -1.828 1.039 -1.l14
0.500 2.0 2.247 -6.000 -6.158 0.892 -2.485
0.724 2.0 2.321 -2.862 -3.181 0.901 -1.318
0.697 2.0 2.305 -3.088 -3.400 0.894 -1.398
0.690 2.0 2.301 -3.151 -3.467 0.893 -1.423
0.750 2.0 2.339 -2.667 -2.983 0.909 -1.250

tNumerical results are obtained from the mesh in Fig. 4(a). Units = m- I
.

Finally, something should be said about the stress sensitivities, accurate calculations
of which are essential for the success of the optimization process. Differentiating equation
(38) with respect to the design variable b, one gets, for the elastic problem,

(40)

Table 7 shows the numerical and analytical values of these quantities, for the elastic
problem, for various values of p, as well as the numerical values of these quantities at time
T. The numerical values are calculated with the mesh shown in Fig. 4(a). A finer mesh
would improve the accuracy of the results. This was demonstrated by Zhang and Mukherjee
(1991), Fig. 6(b).

5. CONCLUSIONS

This paper presents, for the first time, numerical results for shape optimal design of
elasto-viscoplastic continua. The approach combines shape sensitivity analysis and opti
mization by a sequential quadratic programming algorithm. The problem is physically
nonlinear, and the sensitivities are history dependent. Great care must be exercised to
numerically obtain the sensitivities, especially those of stresses, with sufficient accuracy, in
order for the optimization process to be successful.

These optimization problems for physically nonlinear materials are extremely chal
lenging from a numerical viewpoint. Adaptive meshing and vector and parallel pro
gramming are expected to be essential for the efficient solution of realistic problems with
several design variables.

The first numerical results presented in this paper are extremely encouraging. Another
problem of interest in the small-deformation regime, for example, is the optimal design of
shapes to get the desired distribution of residual stresses in solid bodies undergoing elasto
plastic or elasto-viscoplastic deformation.

Another important goal of this ongoing research program is the optimal design of
manufacturing processes-such as the design ofoptimal die shapes for extrusion or optimal
pre-form shapes for forging. Sensitivity analysis for large-strain, large-rotation, elasto
viscoplastic problems, suitable for the design ofmanufacturing processes, has recently been
carried out (Zhang et al., 1992b). Work is now in progress in the area of optimal design of
this very important class of problem.
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